Influence of Ga/Al Ratio on Luminescence and Scintillation in Ce³⁺/Tb³⁺ Co-Doped Gd₃(Ga,Al)₅O₁₂ Scintillators

<u>Masao Yoshino</u>¹, Kazuya Omuro¹, Karol Bartosiewicz², Liudmila Gushchina³, Takahiko Horiai⁴, Kyoung Jin Kim^{3,4}, Kei Kamada^{3,4}, Seiichi Yamamoto⁵, Kohei Nakanishi⁶, and Akira Yoshikawa^{1,3,4}

¹Tohoku University, Institute for Materials Research, Sendai, Miyagi, 980-8577, Japan

²Institute of Physics of the Czech Academy of Sciences, 18200 Praha, Czechia

³C&A Corporation, Sendai 980-8579, Miyagi, Japan.

⁴Tohoku University, New Industry Creation Hatchery Center, Sendai 980-8579, Miyagi, Japan.

⁵Waseda University, Faculty of Science and Engineering, Tokyo 169-8555, Japan

⁶Nagoya University, Graduate School of Medicine, Nagoya 461-8673, Japan.

In recent years, the integration of advanced X-ray imaging methodologies with monochromatic X-ray sources has enabled imaging at submicron to micron scales, thereby garnering significant interest in high-resolution synchrotron radiation X-ray imaging research [1]. Oxide single-crystal scintillators represent a critical class of functional materials distinguished by their high density, large effective atomic number, and superior physical and chemical stability—properties that render them particularly well-suited for X-ray imaging applications [2]. Among these materials, Ce³⁺-doped Gd₃(Ga,Al)₅O₁₂ (GGAG:Ce) exhibits the highest light yield reported to date among oxide-based single-crystal scintillators, positioning it as one of the most promising candidates for X-ray detection [3]. In recent investigations, we have focused on co-doping Ce³⁺ and Tb³⁺ ions within the garnet crystal structure. Co-doped Ce³⁺,Tb³⁺ scintillators have demonstrated enhanced luminescence and scintillation performance attributed to efficient energy transfer between the two ions [4]. Specifically, Ce³⁺ emission, originating from the 5d–4f transition, is highly sensitive to the crystal field due to the spatial extension of the 5d orbital. In contrast, Tb³⁺ emission, governed by 4f–4f transitions, is largely unaffected by crystal field variations due to the localization of 4f electrons near the nucleus. Consequently, while the luminescence characteristics of Ce^{3+} are influenced by the host composition, those of Tb^{3+} remain relatively stable.

In this study, we investigated the bidirectional energy transfer dynamics between Ce^{3+} and Tb^{3+} as a function of Ga-to-Al ratio (x=1,2,3,4) in $Gd_3Ga_xAl_{5-x}O_{12}$. Crystals with the composition $Gd_3Ga_xAl_{5-x}O_{12}$:0.5%Ce, 15%Tb (x=1,2,3,4) were grown using the micro-pulling-down method, and their photoluminescence, photoluminescence excitation, and radioluminescence characteristics were evaluated. The results revealed that the efficiency of bidirectional energy transfer between Ce^{3+} and Tb^{3+} was dependent on the Ga:Al ratio, with the highest total radioluminescence intensity observed at a Ga:Al ratio of 3:2. In addition to a discussion on luminescence behavior, this study also presents the successful growth of large single crystals via the Czochralski method and demonstrates their practical applicability through X-ray imaging experiments.

- [1] T. Martin, A. Koch, J. Synchrotron Radiat. 13 (2006) 180–194.
- [2] M. Nikl, A. Yoshikawa, Adv. Opt. Mater. 3 (2015) 463–481.
- [3] K. Kamada, and A. Yoshikawa et al., Cryst. Growth Des. 11 (2011) 4484–4490.
- [4] K. Omuro, M. Yoshino, and A. Yoshikawa et al., J. Lumin. 273 (2024) 120663.