Single Crystal Growth of Mg and Ce co-doped Y₃(Ga,Al)₅O₁₂ with various Mg concentration and their scintillation properties

<u>Hisato Suezumi</u>^{1,2}, Kei Kamada^{3,4}, Masao Yoshino^{2,3}, Kyoung Jin Kim³, Rikito Murakami^{2,3}, Satoshi Ishizawa^{2,3}, Akihiro Yamaji^{2,4}, Shunsuke Kurosawa⁴, Yuui Yokota^{2,4}, Hiroki Sato^{2,4}, Takashi Hanada², and Akira Yoshikawa^{2,3,4}

¹Graduation school of Engineering, Tohoku University, Japan
²Institute for Materials Research (IMR), Tohoku University, Japan
³C&A corporation, Japan
⁴ New Industry Creation Hatchery Center (NICHe), Japan

[Introduction] Ce:Gd₃(Ga,Al)₅O₁₂ (GAGG) single crystal has been attracted as scintillator in X-ray photon-counting detectors (PCDs) for Photon Counting Computed Tomography (PCCT) in the medical field. However, the K-absorption edge of Gd is at around 50 keV which is in the range of the X-ray inspection energy region, can affect to the degrade of imaging quality due to the difficulty in energy discrimination. On the other hand, Ce:Y₃(Ga,Al)₅O₁₂ (YAGG) single crystal has been focused on as a candidate material for PCDs scintillator since the K-edge of Y is at around 17 keV which is out of the X-ray energy region, therefore, it is possible to discriminate the energy well. On the other hands, the micro-pulling down (μ -PD) method^[2] based material explorations have been conducted in YAGG. Among them, Mg co-doped Ce:Y₃Ga_xAl_{5-x}O₁₂ (x=2,3) showed the higher light yield of 36,000-38,800 photons/MeV and shorter decay time of below 20 ns. This enhancement of light yield and decay time shortening are expected to be the effect of Mg²⁺ to the increase in conduction band minimum by changing the Ce charge from Ce³⁺ to Ce⁴⁺ states. However, the detailed luminescent properties related to co-doping with Mg and the presence of Ce⁴⁺ remain unresolved.

[Results and Discussion] In this research, Mg and Ce co-doped $Y_3Ga_xAl_{5-x}O_{12}$ single crystals were grown by the μ -PD method with various Mg concentrations. The scintillation properties and the effect of Mg²⁺ to the defects were measured. Single crystals of Mg,Ce:Y₃Ga_xAl_{5-x}O₁₂(x=2,3) were grown with a radio frequency heating system. Yellow like colored single crystals with 3 mm diameter and 70 mm length were grown. Mg,Ce:Y₃Ga₂Al₃O₁₂ showed a light yield of 44,000 photons/MeV and decay time of 50 ns. For further investigation of the understanding of Mg co-doping effect on YAGG, optical absorption measurement and positron annihilation measurement were conducted. As the increase in Mg²⁺ concentration, Ce³⁺(4f-5d₁) absorption sharply decreased to 0, and the absorption intensity around 200-350 nm highly increased from the optical absorption spectra, and the previous defect engineering study in the Mg²⁺ co-doped Lu₃Al₅O₁₂ showed the same absorption phenomenon. Mg²⁺ concentration from the positron annihilation measurement. Therefore, the absorption enhancement of the charge transfer suggested an increase in Ce⁴⁺ is expected to be due to the charge compensation of Mg²⁺ which compensates for defects.

- [1] K. Shimazoe, et al. Communications Engineering 3.1 (2024): 167.
- [2] A. Yoshikawa et al., Opt. Mat. 30(1)(2007) 6-10.
- [3] K.Kamada, et al, IOP Conf. Ser.: Mater. Sci. Eng. 169 (2017) 012013.
- [4] K. Omuro, et al. Journal of Alloys and Compounds 1008 (2024): 176550.