Monovalent ion doping effect on the scintillation properties of BaCl₂ single crystals for eutectic type thermal neutron detector Ryosuke Kawabata^{1,2}, Masao Yoshino^{2,4}, Kei Kamada^{2,3,4}, Kyoung Jin Kim^{2,3,4}, Naoko Kutsuzawa⁴, Rikito Murakami^{2,4}, Akihiro Yamaji^{2,3}, Satoshi Ishizawa^{2,4}, Takashi Hanada², Yuui Yokota^{2,3}, Shunsuke Kurosawa^{2,3,5}, Hiroki Sato^{2,3}, and Akira Yoshikawa^{2,3,4} ¹Tohoku University, Graduate School of Engineering, Japan ²Institute for Materials Research, Tohoku University, Japan ³New Industry Creation Hatchery Center, Tohoku University, Japan ⁴C&A Corporation, Japan ⁵Institute of Laser Engineering, Osaka University, Japan [Introduction] Demand for thermal neutron detectors is rising, especially for lithium-ion battery inspection and nuclear power plant dosimetry. While ³He gas detectors were standard due to their stability, recent resource depletion has created a significant supply-demand imbalance. To address this, ⁶Li-containing solid scintillators, leveraging the ⁶Li(n, α) reaction, are being developed. Eutectic scintillators, combining a ⁶Li neutron capture phases with scintillator phases, are particularly promising as ³He alternatives due to their high and flexible ⁶Li content. BaCl₂ is considered a promising candidate for a scintillator phase owing to its low hygroscopicity and a refractive index comparable to that of LiCl, which serves as the neutron capture phase. Previous studies have reported the use of Eu:LiCl/BaCl₂^[1], and Tb:BaCl₂/NaCl/KCl^[2] for X-ray detection. In reference [2], it was suggested that the luminescence properties of the BaCl₂ phase may have been enhanced by the trace incorporation of NaCl or KCl, which were blended with BaCl₂ to form a eutectic composite.^[3] The deliberate doping of trace amounts of monovalent cations such as Na⁺ or K⁺ into BaCl₂ and the subsequent analysis of its scintillation behavior are pivotal for optimizing the performance of the scintillator phase in eutectic-type thermal neutron detectors. Accordingly, the present study aimed to grow BaCl₂ crystals doped with Na, K, Tb, and Eu, characterize their scintillation properties, and assess their potential for practical implementation as a scintillator phase. [Results] In the initial stage of this study, the effects of co-doping with monovalent cations on $BaCl_2$, which constitutes the scintillator phase, were systematically investigated. $BaCl_2$:K1% single crystal was grown by the VB method. The results of X-ray radioluminescence measurements demonstrated that the incorporation of monovalent potassium suppressed the self-trapped exciton (STE) emission near 300 nm, while enhancing the emission around 410 nm, which is associated with defects and impurities in $BaCl_2$. The scintillation pulse height spectra were measured under 137 Cs gamma-ray irradiation, revealing that $BaCl_2$:K1% exhibited a light output three times greater than that of undoped $BaCl_2$. The results of detailed crystal growth procedures and other scintillation properties will be presented in the conference. - [1] Yui Takizawa et al 2022 Jpn. J. Appl. Phys. 61 SC1038 - [2] Yui Takizawa et al 2022 Jpn. J. Appl. Phys. 61 SC1009 - [3] Yui Takizawa et al., Journal of Crystal Growth 580 (2022) 126467 - [4] K. Onodera et al., Radiation Physics and Chemistry 78 (2009) 1031–1033