Crystal Growth and Optical Properties of Ce-doped (Y, Tb)₃Al₂Ga₃O₁₂ and (Gd, Tb)₃Al₂Ga₃O₁₂ Scintillators

Kazuya Omuro^{1,2}, Masao Yoshino^{2,3}, Kei Kamada^{2,3,4}, Kyoung Jin Kim², Takahiko Horiai^{2,3}, Rikito Murakami², Akihiro Yamaji^{2,3}, Takashi Hanada², Yuui Yokota², Shunsuke Kurosawa^{2,3,5}, Yuji Ohashi^{2,3}, Hiroki Sato^{2,3}, and Akira Yoshikawa^{2,3,4}

¹Graduate School of Engineering, Tohoku University, Japan
²Institute for Materials Research, Tohoku University, Japan
³New Industry Creation Hatchery Center, Tohoku University, Japan
⁴C&A Corporation, Japan
⁵Institute of Laser Engineering, Osaka University, Japan

Introduction Scintillators are widely used in X-ray imaging, which are applied for medical diagnostics and airport security controls. To obtain images with excellent contrast in short exposure times, scintillators are required to have the high light output. Therefore, Tb-doped scintillators are noble candidate for X-ray imaging [1]. Recently, Ce and Tb co-doped scintillators such as Ce-doped (Gd, Tb)₃(Al, Ga)₅O₁₂ (GAGG:Ce, Tb) have been explored due to efficient energy transfer between Ce³⁺ and Tb³⁺, which enable to improve the luminescence and scintillation properties [2]. However, the absorption spectra of GAGG show the peaks associated with Gd³⁺ 4f-4f transitions which overlap the absorption bands associated with Tb³⁺ 4f-5d transitions [3]. As a consequence, the presence of Gd in the host material introduces complexity to the behavior of energy transfer between Ce³⁺ and Tb³⁺ and presents challenges in its elucidation. To investigate the specific influence of Gd within the host material on the energy transfer between Ce³⁺ and Tb³⁺, we conducted a comprehensive study of the optical and scintillation properties of Ce-doped (Y, Tb)₃Al₂Ga₃O₁₂ (YAGG:Ce, Tb). Through a comparative analysis of these properties with those of GAGG:Ce, Tb, our aim was to attain a more distinct understanding of the role of Gd as a host material.

Materials and Methods A stoichiometric mixture of 4N CeO₂, Tb₄O₇, Gd₂O₃, Y₂O₃, Ga₂O₃ and Al₂O₃ powders was used as starting material. Ce and Tb co-doped YAGG and GAGG crystals were grown by the micro-pulling-down method. Crystals were grown from an Ir crucible under the Ar+2%O₂ atmosphere and GAGG crystals were used as seed.

Results We were succeeded in growing transparent YAGG and GAGG crystals. Under excitation into Ce^{3+} 4f-5d band at 430 nm, the typical emission spectra associated with the Ce^{3+} and Tb^{3+} were simultaneously observed in both crystals. However, Tb^{3+} emission of YAGG crystal had higher intensity than that of GAGG crystal. The results of photoluminescence decay times and scintillation properties measurement will be presented in the conference.

- [1] K. Kamada, A. Yoshikawa, et al., IEEE Trans. Nucl. Sci. 65 (2018) 2036-2040.
- [2] T. Wu, et al., Materials 15 (2022) 2044.
- [3] A. Markovskyi, et al., J. Alloys Compd., 849 (2020) 155808.