Er-doped zinc-silicate glass-ceramics with enhanced emission in the near-infrared region

<u>Petr Vařák^{1,2}</u>, Jan Baborák¹, Emmanuel Véron³, Alena Michalcová⁴, Jan Mrázek², Jakub Volf¹, Mathieu Allix³, and Pavla Nekvindová¹

¹Department of Inorganic Chemistry, University of Chemistry and Technology, Technická 5, 166 28, Praque, Czech Republic

²Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, 182 51 Prague, Czech Republic

³CNRS, CEMHTI UPR3079, Univ. Orléans, F-45071 Orléans, France

⁴Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Technická 5, 166 28, Praque, Czech Republic

Glass-ceramics from the system A_2O -ZnO-SiO₂ (A = Li, Na, K, Cs) were prepared, and the relationship between the composition, crystallization and luminescence properties is studied. The glass-ceramics contain various crystalline phases, including zinc oxide ZnO, zinc silicate Zn_2SiO_4 (willemite) or alkali zinc silicate A_2ZnSiO_4 . We show that the tendency towards crystallization increases with decreasing diameter of alkali cation, from Cs⁺ to Li⁺. The Li₂Ocontaining glass crystallizes directly after melt-quenching, whereas the Cs₂O-containing glass only crystallizes after heat treatment at 900 °C. We show that the Na₂O-ZnO-SiO₂ system is highly beneficial for the crystallization of willemite. The presence of Zn₂SiO₄ nanocrystals in the Na₂O-containing samples is confirmed by TEM imaging, the size of nanocrystals is around 8 nm. The high crystallinity of the samples leads to a significant enhancement of emission intensity around 1.5 μ m. However, the solubility of Er³⁺ ions in the zinc-based crystalline phases is shown to be highly limited. When heat treated in the range of 700 - 850 °C, the luminescence characteristics of the 1.5 μ m emission, such as band shape or fluorescence lifetime remain nearly unchanged or exhibit only small modifications, suggesting negligible changes in the Er³⁺ environment. The Er³⁺ ions likely remain in the residual amorphous phase or grain boundaries. A significant evidence for the incorporation of Er³⁺ ions in crystalline lattice is observed only in samples heat treated at 900 °C, where the Na₃ErSi₃O₉ phase is formed in the Na₂O-ZnO-SiO₂ system.

This work was supported from the Specific university research – grant No. A1_FCHT_2022_008 and A2_FCHT_2022_048. This work was supported by the Czech Science Foundation, grant No. GA23-05507S