Silver phosphate glasses modified by transition metal oxides

Ladislav Koudelka, Tomáš Hostinský, and Petr Mošner

Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic

Phosphate glasses of the systems Ag₂O-V₂O₅-WO₃-P₂O₅ and Ag₂O-V₂O₅-Nb₂O₅-P₂O₅ were studied. In two compositional series of 40Ag₂O-xV₂O₅-(1-x)WO₃-30P₂O₅ and 40Ag₂O-yV₂O₅-(1-y)Nb₂O₅-30P₂O₅13 glasses was prepared and studied. Starting glasses without V₂O₅are slightly yellowish. Glasses with vanadium oxide V₂O₅ are black due to the presence of vanadium in the form of V⁴⁺. Thermal analysis showed on decreasing glass transition temperature with an increasing V_2O_5 content in both studied series. For the glass series with WO₃ glass transition temperature varies within the values 392-279 °C, for Nb₂O₅ containing glasses within the values of 572-279 °C. Glass structure was studied by Raman spectroscopy and by ³¹P MAS NMR. The NMR spectra of 40Ag₂O-xV₂O₅-(1-x)WO₃-30P₂O₅glass series contain one broad resonance peaking at -4.2 - +3.1 ppm. Such position of the resonance signal corresponds to the presence of Q^1 diphosphate structural units. For the $40Ag_2O-yV_2O_5-(1-y)Nb_2O_5-30P_2O_5$ glass series 31 P NMR spectrum of the glass with y = 0 evidently consists of two resonances, which indicates the presence of two types of phosphate units of Q¹ and Q⁰. Such shape of the NMR spectrum is ascribed to the formation of Nb-O-Nb-O-Nb chains from niobate octahedra in the starting glass. These chains disappear with a decrease in the Nb₂O₅ content in the glasses. Raman spectrum of the starting tungstate-phosphate glass series 40Ag₂O-xV₂O₅-(1x)WO₃-30P₂O₅ with x = 0 reveals the dominant band of 918 cm⁻¹, the position of which shifts slightly to lower wavenumbers with decreasing WO₃ content. This band was ascribed to the vibrations of the W-O bonds in WO₆ octahedra. Raman spectrum of the 40Ag₂O-vV₂O₅-(1y)Nb₂O₅-30P₂O₅ glass without V₂O₅ is composed of two bands The first band at 805 cm⁻¹ was ascribed to the presence of Nb-O-Nb-O-Nb chains and the second band at 896 cm⁻¹ to the vibrations of Nb-O bonds in NbO₆ octahedra. Final glass with V₂O₅ only reveals in the Raman spectrum dominant band at 912 cm⁻¹, assigned to the vibrations of O-V-O bonds in vanadate structural units.