Study of zero-phonon line splitting in the emission spectrum of vanadium photoluminescence in SrTiO₃:V crystal

Zdeněk Potůček¹, Zdeněk Bryknar¹, and Vladimir Trepakov²

 ¹Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Trojanova 13, 120 00 Prague, Czech Republic
²Ioffe Physical-Technical Institute of the RAS, Polytekhnicheskaya 26, 194021 St.-Petersburg, Russia

Strontium titanate ($SrTiO_3$) is a model ABO₃ perovskite-type oxide with highly polarizable structure and soft TO phonon modes. However, SrTiO₃ crystals remain in paraelectric phase down to the lowest temperatures and only structural phase transition from the cubic to tetragonal phase occurs near 105 K. Recently we have found structured photoluminescence in the near infrared spectral region in vanadium doped $SrTiO_3$ crystals that at low temperatures consisted of a pronounced zero-phonon line near 1157 nm accompanied by well developed vibrational sidebands. We suppose that it originates from V^{3+} ions (3d² configuration) substituted for octahedral coordinated Ti⁴⁺ ions. The zero-phonon line shows a surprisingly large shift to lower energy side with increasing temperature. This very unusual effect in the spectroscopy of transition metal impurity ions in ionic crystals seems to be inherent to luminescence centers in SrTiO₃ with specific properties of energy levels involved in emission transition because very similar temperature shift of the zero-phonon R-line has been observed earlier in the emission spectra of photoluminescence of Cr³⁺ and Mn⁴⁺ impurity ions (3d³ configuration) substituted for Ti⁴⁺ ions in SrTiO₃:Cr and SrTiO₃:Mn crystals, respectively [1, 2]. However, while the R-line of Cr^{3+} and Mn^{4+} emission shifts with increasing temperature monotonically to higher and lover energy side, respectively, a temperature behavior of position of the zero-phonon line near 1157 nm observed below 30 K is rather complex.

Present study of emission spectra of V³⁺ photoluminescence in SrTiO₃:V crystal at high spectral resolution and temperatures between 4.2 and 140 K proved splitting of the zero-phonon line near 1157 nm into four components at low temperatures resulting from the splitting of both ground ${}^{3}T_{1g}$ and excited ${}^{1}T_{2g}$ states of V³⁺ ions. Consequently, complex temperature behavior of the zero-phonon line position originally observed below 30 K under unresolved line structure is related to the changes of relative intensities of the line components owing to the alteration of thermal population of the higher energy sublevel of the ${}^{1}T_{2g}$ excited state. An origin of the ground ${}^{3}T_{1g}$ and excited ${}^{1}T_{2g}$ state splitting in V³⁺ impurity center in SrTiO₃:V crystal will be discussed taking into consideration structural phase transition in SrTiO₃ crystal, spin-orbit coupling, and possible action of the Jahn-Teller effect.

This work was supported by the project "Center of Advanced Applied Sciences", Reg. No. CZ.02.1.01/0.0/0.0/16-019/0000778, of the Operational Program Research, Development and Education co-financed by the European Structural and Investment Funds and the state budget of the Czech Republic.

- [1] S. E. Stokowski and A. L. Schawlow, Phys. Rev. 178 (1969) 464.
- [2] Z. Bryknar, V. Trepakov, Z. Potůček, and L. Jastrabík, J. Luminescence 87-89 (2000) 605.