Relationship between crystal structure and luminescence properties for Ce³⁺-doped rare-earth pyrosilicate

<u>Takahiko Horiai</u>¹, Shunsuke Kurosawa^{2,3}, Jan Pejchal¹, Takashi Hanada², Masao Yoshino², Akihiro Yamaji^{2,3}, Satoshi Toyoda^{2,3}, Hiroki Sato^{2,3}, Yuji Ohashi^{2,3}, Kei Kamada^{2,3}, Yuui Yokota², Akira Yoshikawa^{2,3}, and Martin Nikl¹

¹Institute of Physics of the Czech Academy of Sciences, 162 00 Prague 6, Czech Republic ²Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan ³New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan

 Ce^{3+} -doped rare-earth (RE) pyrosilicate ($Ce:RE_2Si_2O_7$) have been reported as a scintillator capable of converting energy of ionizing radiation to ultra-violet or visible light [1,2]. The electric configuration of Ce^{3+} ion is defined to be [Xe]4f¹ and Ce^{3+} ion can be excited into [Xe]4f⁰5d¹ electronic configuration [3]. Since the 5d electron of Ce^{3+} ion is existed in the outermost-shell, degenerated 5d levels of Ce^{3+} ion splits due to both of the crystal field strength in Ce^{3+} site and the deviation of the electric charges in the crystal field of Ce^{3+} ion. Here, the crystal structures of $Ce:RE_2Si_2O_7$ have diverse range of crystal systems and space groups depending on the average RE ionic radii [4]. In this study, we performed a comprehensive study of $Ce:RE_2Si_2O_7$ to investigate the relationship between the crystal structure and the luminescence properties.

Since the most $RE_2Si_2O_7$ have incongruently melting compound and difficult to grow single crystals from the melt, we synthesized the sintered compacts using solid reaction method. As starting materials, commercial oxide powders (SiO₂, Y₂O₃, La₂O₃, CeO₂, Gd₂O₃ and Lu₂O₃) with purities of over 99.99% were used. After weighing according to (Ce_{0.01} $RE_{0.99})_2Si_2O_7$ (RE= La, Gd, Y and Lu), (Ce_{0.01} RE_{0.50} RE'_{0.49})₂Si₂O₇ ((RE,RE') = (La,Gd), (La,Y), (La,Lu), (Y, Gd), (Gd, Lu) and (Lu, Y)) and (Ce_{0.01} Y_{0.24} Lu_{0.75})₂Si₂O₇, the powders were formed into pellets by a hydraulic press. The pellets were pre-sintered at 1550°C for 12 hours under air atmosphere. After that, main sintering was performed at 1600°C for over 48 hours under air atmosphere.

The powder X-ray diffraction analysis results show that the phases of $(Gd,Lu)_2Si_2O_7$ and $(La,Lu)_2Si_2O_7$ are not single phase. On the other hand, the other samples were obtained single phase and classified into three kinds crystalline systems $(C2/m, Pna2_1 \text{ and } P2_1/c)$ according to the average RE ionic radii. The crystal structure information (lattice parameters and atomic coordinates) was identified by the Rietveld refinement technique, and it was found that the average RE-O bond lengths were increased as the average RE ionic radii were increased.

- [1] L. Pidol, et al., J. Phys.: Condens. Matter 15(2003)2091
- [2] A. Suzuki, et al., APEX 5(2012)102601
- [3] Z. Song, et al., J. Phys. Chem. C 122(2018)3567
- [4] J. Felsche, J. Less-Common Met. 21(1970)1