Phosphate glasses modified with transition metals

Ladislav Koudelka, Petr Mošner, and Petr Kalenda

University of Pardubice, Faculty of Chemical Technology, Studentská 95, 532 10 Pardubice, Czech Republic

Phosphate glasses present an important group of glass materials having several commercial applications. The most important applications of these glasses are laser glasses, glasses for the deposition of radioactive wastes, and glass solders. Nd-doped laser glasses are produced and tested for the application in fusion reactors. For the storage of radioactive wastes, $Fe_2O_3-P_2O_5$ glasses were proposed due to their high chemical durability and the ability to include a high content of radioactive oxides. Glasses of the ternary system SnO-ZnO-P₂O₅ were investigated for the application in solders replacing lead-based glasses. These glasses reveal a sufficient chemical durability, low values of the glass transition temperature and a low coefficient of thermal expansion.

Our studies of ternary phosphate glasses were devoted mainly to three transition metal oxides MoO_3 , WO_3 and Nb_2O_5 , which are able to form large glass forming regions in various ternary systems. These studies will be demonstrated on two ternary systems BaO-MoO₃-P₂O₅ and BaO-Nb₂O₅-P₂O₅.

Structure of glasses in the BaO-MoO₃-P₂O₅ ternary system was studied by Raman and ³¹P NMR spectroscopies. The glass-forming region in the ternary system was determined, and stable glasses with 0-70 mol% MoO₃were obtained. From the NMR and Raman spectra of glasses, a structural model was proposed. Structural network contains mostly MoO₆ octahedra and PO₄ tetrahedra. In glasses with a high MoO₃ content, the presence of a broad Raman band 854 cm⁻¹, ascribed to Mo-O-Mo bonds, showed on the formation of clusters composed of MoO₆ units. MoO₆ octahedra prevailed in the glass structure, similarly to crystalline MoO₃ and to the compound Ba(MoO₂)₂(PO₄)₂. Formation of MoO₄ tetrahedra was proposed in the glasses with a low P₂O₅ content.

Phosphate glasses of the ternary system BaO-Nb₂O₅-P₂O₅ were studied in two compositional series with a constant BaO or Nb₂O₅ content. Chemical durability of the Nb₂O₅-containing glasses is high and the glass transition temperature increases significantly with increasing Nb₂O₅ content as well as the index of refraction. According to the Raman spectra at low Nb₂O₅ content niobium forms isolated octahedra NbO₆ incorporated in the glass network, but when Nb₂O₅ content increases, these octahedra are linked into chains and further into three-dimensional clusters. NbO₆ octahedra clustering is reflected also in the ³¹P MAS NMR spectra.

Study of the glass to crystal transformation was realized for two ternary compounds in the glass-forming region of the BaO-Nb₂O₅-P₂O₅ system: $Ba_3Nb_2(PO_4)_4O_2$ with 16.66 mol% Nb₂O₅ (glass composition 3BaO.1Nb₂O₅.2P₂O₅) and BaNb₂P₂O₁₁ with 33.33 mol% Nb₂O₅ (glass composition 1BaO.1Nb₂O₅.1P₂O₅).

The authors are grateful for the financial support to the research project No. 18-01976S of the Grant Agency of Czech Republic.