Thermoelectric properties of W-doped Bi₂Se₃ single crystals

<u>Vladimír Kucek¹</u>, Čestmír Drašar², and Ludvík Beneš¹

¹Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic ²Institute of Applied Physics and Mathematics, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic

There is currently a boom in a search for alternative power resources. One of the alternatives is the usage of the thermoelectric effect. Research on thermoelectric (TE) materials is thus a very active field of research. Efficiency of a TE material is expressed in terms of a so-called dimensionless figure of merit, ZT, where $ZT = \alpha^2 \sigma T / \kappa$. In this formula, σ , α , T and κ are the Seebeck coefficient, electrical conductivity, absolute temperature and thermal conductivity, respectively [1]. Next to the low thermal conductivity, the numerator $\alpha^2 \sigma$ (so called power factor PF) needs to be high for a large TE performance.

 Bi_2Se_3 , which adopts the tetradymite structure, is one of the constituents of room-temperature thermoelectric (TE) materials. Recently we observed the extraordinary behavior of the Seebeck coefficient and carrier mobility leading to an enhanced power factor in the doped crystals in Cr-doped Bi_2Se_3 single crystals [2]. Considering to this fact we examine the influence of tungsten (as like chromium the transitive metal of 6^{th} group) doping on single crystals of bismuth selenide in terms of thermoelectric and transport properties.

The series of $Bi_{2-x}W_xSe_3$ single crystalline samples with varying values of x (for x = 0 - 0,035) was prepared by the self-flux method. The phase purity of the products was verified by X-ray diffraction. The samples were then characterized by the measurement of electrical conductivity, the Hall coefficient and the Seebeck coefficient over a temperature range of 100 - 475 K. We discuss the influence of W substitution on the free carrier concentration and the thermoelectric performance. All of the samples demonstrate n -type conductivity. The results further showed low solubility of tungsten in bismuth selenide (x \leq 0,005) as well as decreased value of power factor suggesting that tungsten doping of bismuth selenide is contrary to chromium doping not promising in regard to thermoelectric applications.

- [1] G. S. Nolas, J. Sharp, H. J. Goldsmid, Thermoelectrics / Basic Principles and New Material Developments, Springer-Verlag, Berlin, 2001, p. 128.
- [2] P. Cermak, P. Ruleova, V. Holy, J. Prokleska, V. Kucek, K. Palka, L. Benes and C. Drasar, J. Solid State Chem. 258 (2018) 768-775.