Structure and properties of Ag₂O-GeO₂-P₂O₅ glasses

Tomáš Hostinský, Petr Mošner, and Ladislav Koudelka

Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic

Phosphate glasses of the $Ag_2O-GeO_2-P_2O_5$ were studied in two compositional series (50-x) $Ag_2O-xGeO_2-50P_2O_5$ with 0-50 mol% GeO_2 and $50Ag_2O-xGeO_2-(50-x)P_2O_5$ with 0-20 mol% GeO_2 . Basic physical properties were determined, and thermal properties studied by differential thermal analysis, thermomechanical analysis, and hot-stage microscopy. The glass structure was investigated using Raman spectroscopy and ^{31}P MAS NMR by both 1D and 2D techniques. The electrical properties of the glasses were obtained by using impedance spectroscopy.

In both glass series glass transition temperature increases with GeO₂ additions and all glasses containing GeO₂ crystallizes in temperature range 500-750 °C. The dependence of the coefficient of thermal expansion in both cases sharply decreased with the addition of GeO₂, which is a typical phenomenon when T_a increases, and indicates the strengthening of the structural network of the glass due to the increase in the occurrence of Ge-O bonds. ³¹P MAS NMR spectra of (50-x)Ag₂O-xGeO₂-50P₂O₅ series were dominated by one major resonance which shifts to more negative values with increase of GeO₂ content. Position and the shift of the peak indicates that network of the glass is mainly built from Q² structural units. By using 2D ³¹P INADEQUATE sequence was confirmed that phosphate chains are gradually shortened due to the formation of Ge-O-P bonds. ³¹P MAS NMR spectra of 50Ag₂O-xGeO₂-(50-x)P₂O₅ consist of multiple peaks that mainly belong to structural units Q^1 and Q^2 . Spectra of this series are also influenced by hygroscopicity of the glasses. Raman spectra of the glasses includes dominant vibrational band in the region $1000-1300 \text{ cm}^{-1}$, changes in this region reveals transformation of phosphate glass network. Another dominant vibrational bands can be found in the region 500-800 cm⁻¹. This region reflects evolution of P-O-P connections to P-O-Ge and Ge-O-Ge connections through the series.