Highly nonstoichiometric Tb₂Y_{0.1-1}Al₅O₁₂:Ce single crystals with modified microstructure, defect concentration, luminescence, and scintillation properties

<u>Karol Bartosiewicz</u>¹, Masao Yoshino², Takahiko Horiai², Marcin Witkowski³, Damian Szymanski⁴, Shunsuke Kurosawa^{2,5,6,7}, and Akira Yoshikawa^{2,6}

¹Faculty of Physics of Kazimierz Wielki University, Powstańców Wielkopolskich 2, 85-090 Bydgoszcz, Poland

²New Industry Creation Hatchery Center, Tohoku University, Sendai, Miyagi, Japan ³Faculty of Physics, Nicolaus Copernicus University, Toruń, Poland

⁴Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wrocław,

Poland

⁵Institute for Materials Research, Tohoku University, Sendai, Miyagi, Japan
⁶Institute of Laser Engineering, Osaka University, Osaka, Japan
⁷Faculty of Science, Yamagata University, Yamagata, Japan

The Ce^{3+} doped $Y_3Al_5O_{12}$ (YAG:Ce) single crystal is a member of the family of high-performance complex oxide scintillators. Ce³⁺ centers exhibit high quantum efficiency and fast response with a decay time of approximately 50 ns in the 520 nm emission band [1]. However, the YAG host lattice contains electron traps associated with antisite defects and oxygen vacancies, which considerably reduces the yield of scintillation light and decelerate the kinetics of scintillation decay. Increasing the concentration of Ce³⁺ ions to improve the capture of electron-hole pairs is not feasible because energy transfer between Ce^{3+} ions can reduce the light output. The improvement of scintillation parameters can be achieved by enhancing energy transfer from the host lattice to the activator. Introducing Tb atoms to the host lattice can efficiently transfer excitation energy towards Ce³⁺ ions [2]. Previous reports have revealed that an excess of RE_2O_3 increases the concentration of RE_{Al} antisite defects (ADs). Therefore, in order to reduce the concentration of RE_{Al} ADs, strong non-stoichiometry was introduced to Ce^{3+} -doped Tb₂Y₁Al₅O₁₂ single crystals. This research investigates the crystal growth of both stoichiometric Tb₂Y₁Al₅O₁₂:Ce and non-stoichiometric Ce³⁺-doped Tb₂Y_{0.1}Al₅O₁₂ single crystals using the μ -PD method. The study aims to explore the influence of non-stoichiometry on various aspects, including crystal growth, microstructure distortion, defect concentration as well as luminescence and scintillation properties. To analyze these effects, XRD, SEM-EDS, thermally stimulated luminescence, photoluminescence, and scintillation properties are utilized.

This work was supported by the National Science Centre Poland (NCN) no.: 2020/39/D/ST3/0271.

- [1] M. Nikl, et al., Prog. Cryst. Growth Charact. Mater. 59 (2013) 47-72.
- [2] K. Bartosiewicz, et al., Phys. Status Solidi RRL 2020, 2000327.